Application Note · PlasmaQuant® MS Elite

Challenge

Separation and quantification of toxic As species in apple juice

Solution

Combination of LC and highly sensitive ICP-MS to determine As species down to parts-per-trillion concentrations

Speciation of Arsenic in Apple Juice by LC-ICP-MS on PlasmaQuant[®] MS Elite

Introduction

The different physico-chemical forms of most elements vary in terms of mobility, toxicity and bioavailability. For example, arsenic species such as the inorganic trivalent arsenic (As III) and pentavalent arsenic (AsV) are highly toxic whereas the organic forms as monomethyl arsenic (MMA) and dimethyl arsenic (DMA) have significantly reduced toxicities. Reporting only the total concentrations can often be misleading.

When Liquid Chromatography (LC) is interfaced with Inductively Coupled Plasma Mass Spectrometry (ICP-MS), species elute one by one from the LC column directly to the ICP-MS for detection by elemental speciation. The coupling of LC to ICP-MS is a straight forward task; no hardware changes are required to either the LC or ICP-MS. The LC column is connected directly to the nebulizer of the ICP-MS. Coupling an LC to the PlasmaQuant[®] MS Elite has the added advantage of offering up to 5 times more sensitivity, offsetting the loss of total signal resulting from the separation of each species and providing very low part-per-trillion (ng/L) detection limits.

Fruits can be highly polluted with arsenic today, due to the use of arsenic-based pesticides during the past century. The following experiment shows the sensitivity and detection capabilities of the PlasmaQuant[®] MS Elite for arsenic speciation in apple juice.

Instrumentation

The LC system used was a BRUKER Advance HPLC system with a 50 μ m sample loop and a Hamilton PRP-X100 (4.6 mm x 150.0 mm, 5 μ m) anion exchange column. The ASpect MS software allows automatic optimization of the ion optics and plasma gas flows. Prior to connecting the LC to the ICP-MS, it was optimized for maximum sensitivity on arsenic isotopes. ICP-MS and LC conditions are summarized in tables 1 and 2.

Table 1, Hasinaduant MS Lince Repeating condition.	Table 1: PlasmaQu	ant [®] MS Elite IC	P-MS operating	conditions
--	-------------------	------------------------------	----------------	------------

Table 2: LC operating conditions

Parameter	Specification	Parameter	Specification		
Plasma Gas Flow	9.0 L/min	Mobile Phase	A : 12.5 mM ammonium carbonate,		
Auxiliary Gas Flow	1.00 L/min	_	1 % MeOH B : 60.0 mM ammonium carbonate,		
Nebulizer Gas Flow	1.00 L/min		1 % MeOH		
Plasma RF Power	1.30 kW	Flow Rate	1 mL/min 12 min		
Monitored Ion	⁷⁵ As	Run Time			
Scan Mode	Time Resolved	– Column	Anion exchange, Hamilton PRP-X100, 4.6 mm x 150.0 mm, 5 μm		
Dwell Time	500 ms	Column Temperature	40 °C		
Spraychamber Temp.	3 °C	Sample Injection	50 μL		
Ion Optics	Optimized for ⁷⁵ As sensitivity	Detection	PlasmaQuant [®] MS Elite ICP-MS		

Samples and Reagents

Deionized water (18.2 M Ω /cm, Millipore MiliQ, Billerica, MA, USA) was used for all solution preparations (mobile phases, standard solutions and samples).

Mobile phase (LC)

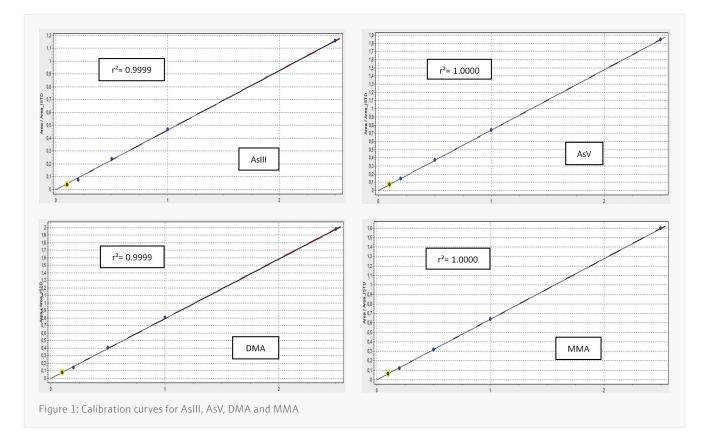
Ammonium carbonate Puratronic[®] (Alfa Aesar) and methanol absolute ULC/MS (Biosolve BV, 5555 Valkenswaard) were used to produce both A (12.5 mM ammonium carbonate, 1 % MeOH) and B (60 mM ammonium carbonate, 1 % MeOH) mobile phases. Mobile phases were prepared daily.

Calibration standards

Calibration solutions of arsenic trioxide (AsIII, Acros Organics), arsenic pentoxide (AsV, Sigma-Aldrich), monosodium acid methane arsonate (MMA, Supelco) and cacodylic acid (DMA, Fluka) were prepared daily. Calibration ranged from 0.1 to 2.5 µg/l for all arsenic species

Sample preparation

Five different apple juices (Juice 1 to 5) were purchased in a French supermarket including an organically grown product (Juice 2). The samples were filtered using a 0.45 μ m filter (Millipor Millex-HV) to suppress suspended matter. Filtrates were then diluted two-fold prior to analysis.


Internal standard

Arsenobetaine (BCR626, IRMM) was spiked in every solution (standard solutions and samples) at $1 \mu g/L$ to correct for any potential drift and matrix effect.

Results and Discussion

Elemental speciation

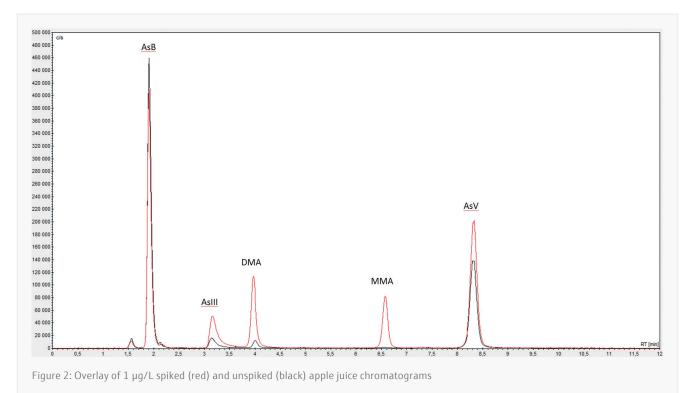
Speciation of the four arsenic species (AsIII, DMA, MMA, AsV) and arsenobetaine (internal standard) were performed using the gradient LC method in less than 10 minutes. Excellent calibrations for each of the arsenic species were obtained with calibration coefficients \geq 0.9999 achieved when calibrating on solutions ranging from 0.1 to 2.5 µg/L as illustrated in Figure 1.

Apple juice analysis

Table 3 summarizes the As determination in five apple juice samples.

Table 3: As species concentration in five commercial apple juices

	Concentration (µg/L)							
	AsIII	DMA	MMA	AsV	Total As			
Juice 1	0.297	0.088	0.010	1.550	1.945			
*Juice 2	0.052	0.037	0.007	0.102	0.198			
Juice 3	0.186	0.084	0.007	0.430	0.707			
Juice 4	1.172	0.220	0.006	0.197	1.595			
Juice 5	0.331	0.051	0.000	1.847	2.229			


* Juice 2 was an organically grown product and had the lowest concentration of arsenic. The total As content in all five juices did not exceed 3 µg/L.

Spike recovery

To evaluate the repeatability of the method, undiluted apple juice 1 was spiked with 1μ g/L of each species. The spiked sample was measured ten times and the average spike recovery for the four species is reported in table 4.

Table 4: Results of the spike recovery test

Apple juice 1 + 1µg/L spike												
	Average con- Spiked samples							Average spike				
	the unspiked sample	1	2	3	4	5	6	7	8	9	10	recovery
AsIII	0.297	1.254	1.236	1.210	1.244	1.184	1.244	1.228	1.190	1.184	1.210	92 %
DMA	0.088	1.022	1.000	0.966	1.018	0.966	1.018	1.004	0.972	0.962	0.998	90 %
MMA	0.010	0.918	0.900	0.884	0.952	0.884	0.936	0.918	0.884	0.904	0.898	90 %
AsV	1.550	2.548	2.538	2.440	2.602	2.448	2.608	2.566	2.480	2.512	2.474	97 %

Long Term Stability

40 apple juice samples (8 hours) were run in the same sequence and a calibration check solution at $1 \mu g/L$ was measured every 10 samples. Table 5 summarizes the results.

	AsIII (µg/L)	DMA (µg/L)	MMA (µg/L)	AsV (µg/L)
Check 1	1.021	1.031	1.012	1.024
Check 2	1.046	1.025	1.014	1.014
Check 3	1.024	1.029	1.001	1.000
Check 4	0.997	1.048	1.026	1.034

Table 5: Robustness test using a 1 µg/L calibration check solution over a sequence of 40 samples (8 hours)

The average readback for each species fell within the range of 1.013-1.033 μ g/L and with a precision of 1-2 % RSD over the 8 hours duration, thus validating the long term performance of the method.

Typical detection limits

Table 6 shows the method detection limits (DLs) for the four common organic and inorganic forms of arsenic in apple juice. All the measurements were made under routine laboratory conditions.

Detection limits were calculated using 3 times the standard deviation of blank samples (n=10).

Table 6: Typical detection limits in apple juice using the PlasmaQuant® MS Elite

Arsenic species	Detection limit (ng/L)
Arsenite (AsIII)	2.7
Dimethyl arsenic acid (DMA)	2.6
Monosodium acid methane arsonate (MMA)	2.7
Arsenate (AsV)	3.3

Conclusion

This work has demonstrated that the PlasmaQuant[®] MS provides excellent detection capability when coupled with a BRUKER Advance HPLC system for arsenic speciation in apple juice. Minimal sample preparation is required and consists of simple filtration and a two-fold dilution. The high sensitivity of the PlasmaQuant[®] MS Elite allows for routine detection of arsenic species to low part per trillion (ng/L) levels.